2020/01/27 FRONTIER Task 3 Workshop @ ORNL # Corrosion experiment DURING electron irradiation performed by KURRI-LINAC Masafumi Akiyoshi Radiation Research Center, Osaka Prefecture University #### **Corrosion DURING irradiation** In 2003, ceramics specimens irradiated by japanese experimental fast-reactor JOYO using CMIR-5 rig were extracted from their capsules. Two capsules were filled with white infiltrate that showed strong acid. It was considered Na was infiltrated to the capsules. All ceramic materials (α -Al₂O₃, AlN, β -Si₃N₄ and β -SiC) were stable in liquid Na without irradiation, but these specimens showed severe damage. β -Si₃N₄ and β -SiC showed good shape but showed large swelling (up to 10%), and furthermore, α -Al₂O₃ and AlN were disrupted into small pieces. α -Al₂O₃ and AlN β -Si₃N₄ and β -SiC T66 capsule $8.0 \times 10^{26} \text{ n/m}^2 \text{ (fast) at } 677^{\circ}\text{C}$ #### 4種類の材料間でのスエリングの比較 CMIR-4 及びCMIR-5 T6x 棒状試料の照射後スエリング測定結果(4種の材料間の比較) ### 転位ループ導入面(1) α-Al₂O₃に導入された転位ループ と粒界クラック β-SiCに導入された転位ループ (観察面は{100}面)と粒界クラック #### **30MeV Electron Irradiation** 30MeV Electron Accelerator #### **KURRI-LINAC** Kyoto University Research Reactor Institute, Kumatori Accelerate Energy: 28-32MeV The beam current: ~230 μ A Peak current of pulse: ∼600mA Pulse width: 4 µ s Pulse frequency: ∼100Hz Energy Flux: ~7kW in several cm > the divertor in ITER, 10MW/m The Range of 30MeV Electron ~5cm (in ceramics) Energy of PKA (max): 125keV → Energy of PKA (average): 225eV Number of Displacement Atoms per PKA: 3-4 atoms Mainly Point Defects ## **Medium Temperature Irradiation** BN spray coating Beam Al water pipe # Indirect Water cooling system Cu Heat sink and Al water pipe KURL1301: 300 $^{\circ}$ C / 5.84 kW 32MeV, 4 μ s x 570mA x 80Hz KURL1302: 380 °C / 5.63 kW 32MeV, 4μ s x 550mA x 80Hz Get over the high heat flux (> 10 MW/m) Achieved a reliable irradiation at around 400°C #### Radio Activity High Energy Electrons \rightarrow Brems. X-rays \rightarrow Photonuclear Reaction $(\gamma, n) \rightarrow$ Radio-Activation MT ID KURL1302 (Typical conditions): 32MeV, peak $4 \mu s$ 560mA, 80Hz \rightarrow surface neutron flux 5.7×10^9 n/cm² s 2013/3/11 \rightarrow 3/14 (72h non-stop) 2.8x10²⁰ e \rightarrow 0.01 dpa Surface dose rate: 2013/3/17: 14.2 mSv/h 2014/4/14: 318 μ Sv/h #### Specimens: Sapphire, α -Al₂O₃ (Toray A-999), AlN (Tokuyama SH-50, wo Y₂O₃), β -SiC (Bridgestone Pure beta, p-type), β -SiC (Tokai Carbon n-type translucent and non-translucent), α -SiC (Nippon Steel 4H n-type single crystal) Cu-64: T_{1/2} 12.7h, Co-60: T_{1/2} 5.27y #### Low energy (<10MeV) Irradiation The Range of 30MeV Electron ~5cm (in ceramics) 30MeV, Target: Oxigen atom E_d = 30eV, Energy of PKA (max): 125keV → Energy of PKA (average): 225eV Number of Displacement Atoms per PKA: 3.8 atoms Mainly Point Defects Typical 4days irradiation gives about 3 × 10²0e in 2cm², → Displacement: O: 0.01dpa The Range of 8MeV Electron ~5.4mm (in SS) ~2.2mm (in tungsten) 8MeV, Target: Fe atom E d = 40eV, Energy of PKA (max): 2.7keV → Energy of PKA (average): 149eV Number of Displacement Atoms per PKA: 1.9 atoms 8MeV, Target: W atom $E_d = 60eV$, Energy of PKA (max): 0.84keV → Energy of PKA (average): 118eV Number of Displacement Atoms per PKA: 1.0 atoms Still Induce Point Defects Typical 4days irradiation gives about 3 × 10²⁰e in 2cm², → Displacement: Fe: 0.012dpa W: 0.011dpa **High Temperature Irradiation** Temperature Control: Beam Frequency + Kanthal heater KURL0602: 1095°C Quartz Glass tube and alumina cement, kanthal heater 30MeV, 3μ s x 500mA x 30Hz (1.35kW) KURL0702: 700°C Alumina tube and alumina cement, kanthal heater 30MeV, 3μ s x 530mA x 12Hz (0.57kW) #### **Low Temperature Irradiation** KURL0604: -165° C / 1.35kW Liquid Nitrogen cooled system 30MeV, 3 μ s x 500mA x 30Hz Cu heat sink in Water chamber KURL1201: 80° C / 6.0kW 32MeV, 4μ s x 590mA x 80Hz KURL1401: 90° C / 4.7kW 28MeV, 4μ s x 600mA x 70Hz Very Stable and Established Irradiation System #### Liquid Nitrogen Supply #### KURL1801 First attempt for Liquid-metal corrosion test CT monitor and pre heat sink was burn! #### KURL1801 Second attempt for Liquid-metal corrosion test Beam time: 2.4×10^5 sec (66.7h) Dose: 1.1×10^{20} e, 4.4 mdpa (for Fe E_d =40keV) #### KURL1901 Third attempt for Liquid-metal corrosion test 1st specimen (NTK04L, pre oxidation 1000°C 10h) Beam time: 1.1×10^5 sec (32.5h) Dose: 5.8×10^{19} e, 2.3 mdpa (for Fe E_d =40keV) 2nd specimen (ODS sp-10 pre oxidation 1000°C 10h) Beam time: 1.1×10^5 sec (32.5h) Dose: 6.5×10^{19} e, 2.6 mdpa (for Fe E_d =40keV) #### KURL1902 4th attempt for Liquid-metal corrosion test 1st specimen (FeCrAl-ODS / Pb-Li) Beam time: 1.1×10^5 sec (32.5h) Dose: 6.6×10^{19} e, 2.6 mdpa (for Fe E_d =40keV) 2nd specimen (JLF-1-SS430/Pb-Li) Beam time: 1.1×10^5 sec (32.5h) Dose: 6.8×10^{19} e, 2.7 mdpa (for Fe E_d =40keV) 1st specimen Temperature monitor was failed because of trouble on AD8495 thermo-couple amplifier. Another attempt showed: pre-spacer 630°C, rear-spacer 430°C