2020/01/27 FRONTIER Task 3 Workshop @ ORNL

Corrosion experiment DURING electron irradiation performed by KURRI-LINAC

Masafumi Akiyoshi

Radiation Research Center, Osaka Prefecture University

Corrosion DURING irradiation

In 2003, ceramics specimens irradiated by japanese experimental fast-reactor JOYO using CMIR-5 rig were extracted from their capsules. Two capsules were filled with white infiltrate that showed strong acid. It was considered Na was infiltrated to the capsules. All ceramic materials (α -Al₂O₃, AlN, β -Si₃N₄ and β -SiC) were stable in liquid Na without irradiation, but these specimens showed severe damage. β -Si₃N₄ and β -SiC showed good shape but showed large swelling (up to 10%), and furthermore, α -Al₂O₃ and AlN were disrupted into small pieces.

 α -Al₂O₃ and AlN

 β -Si₃N₄ and β -SiC

T66 capsule $8.0 \times 10^{26} \text{ n/m}^2 \text{ (fast) at } 677^{\circ}\text{C}$

4種類の材料間でのスエリングの比較

CMIR-4 及びCMIR-5 T6x 棒状試料の照射後スエリング測定結果(4種の材料間の比較)

転位ループ導入面(1)

α-Al₂O₃に導入された転位ループ と粒界クラック

β-SiCに導入された転位ループ (観察面は{100}面)と粒界クラック

30MeV Electron Irradiation

30MeV Electron Accelerator

KURRI-LINAC

Kyoto University Research Reactor Institute, Kumatori

Accelerate Energy: 28-32MeV The beam current: ~230 μ A

Peak current of pulse: ∼600mA

Pulse width: 4 µ s

Pulse frequency: ∼100Hz

Energy Flux: ~7kW in several cm

> the divertor in ITER, 10MW/m

The Range of 30MeV Electron

~5cm (in ceramics)

Energy of PKA (max): 125keV → Energy of PKA (average): 225eV Number of Displacement Atoms per PKA: 3-4 atoms

Mainly Point Defects

Medium Temperature Irradiation

BN spray coating

Beam

Al water pipe

Indirect Water cooling system Cu Heat sink and Al water pipe

KURL1301: 300 $^{\circ}$ C / 5.84 kW 32MeV, 4 μ s x 570mA x 80Hz

KURL1302: 380 °C / 5.63 kW 32MeV, 4μ s x 550mA x 80Hz

Get over the high heat flux (> 10 MW/m)

Achieved a reliable irradiation at around 400°C

Radio Activity

High Energy Electrons \rightarrow Brems. X-rays \rightarrow Photonuclear Reaction $(\gamma, n) \rightarrow$ Radio-Activation

MT ID KURL1302 (Typical conditions): 32MeV, peak $4 \mu s$ 560mA, 80Hz \rightarrow surface neutron flux 5.7×10^9 n/cm² s 2013/3/11 \rightarrow 3/14 (72h non-stop) 2.8x10²⁰ e \rightarrow 0.01 dpa Surface dose rate: 2013/3/17: 14.2 mSv/h 2014/4/14: 318 μ Sv/h

Specimens:

Sapphire, α -Al₂O₃ (Toray A-999), AlN (Tokuyama SH-50, wo Y₂O₃), β -SiC (Bridgestone Pure beta, p-type), β -SiC (Tokai Carbon n-type translucent and non-translucent), α -SiC (Nippon Steel 4H n-type single crystal)

Cu-64: T_{1/2} 12.7h, Co-60: T_{1/2} 5.27y

Low energy (<10MeV) Irradiation

The Range of 30MeV Electron

~5cm (in ceramics)

30MeV, Target: Oxigen atom E_d = 30eV,

Energy of PKA (max): 125keV → Energy of PKA (average): 225eV

Number of Displacement Atoms per PKA: 3.8 atoms

Mainly Point Defects

Typical 4days irradiation gives about 3 × 10²0e in 2cm²,

→ Displacement: O: 0.01dpa

The Range of 8MeV Electron

~5.4mm (in SS)

~2.2mm (in tungsten)

8MeV, Target: Fe atom E d = 40eV,

Energy of PKA (max): 2.7keV → Energy of PKA (average): 149eV

Number of Displacement Atoms per PKA: 1.9 atoms

8MeV, Target: W atom $E_d = 60eV$,

Energy of PKA (max): 0.84keV → Energy of PKA (average): 118eV

Number of Displacement Atoms per PKA: 1.0 atoms

Still Induce Point Defects

Typical 4days irradiation gives about 3 × 10²⁰e in 2cm²,

→ Displacement:

Fe: 0.012dpa W: 0.011dpa **High Temperature Irradiation**

Temperature Control:
Beam Frequency
+ Kanthal heater

KURL0602: 1095°C

Quartz Glass tube and alumina cement, kanthal heater 30MeV, 3μ s x 500mA x 30Hz (1.35kW)

KURL0702: 700°C

Alumina tube and alumina cement, kanthal heater 30MeV, 3μ s x 530mA x 12Hz (0.57kW)

Low Temperature Irradiation

KURL0604: -165° C / 1.35kW Liquid Nitrogen cooled system 30MeV, 3 μ s x 500mA x 30Hz

Cu heat sink in Water chamber

KURL1201: 80° C / 6.0kW 32MeV, 4μ s x 590mA x 80Hz

KURL1401: 90° C / 4.7kW 28MeV, 4μ s x 600mA x 70Hz

Very Stable and Established Irradiation System

Liquid Nitrogen Supply

KURL1801 First attempt for Liquid-metal corrosion test

CT monitor and pre heat sink was burn!

KURL1801 Second attempt for Liquid-metal corrosion test

Beam time: 2.4×10^5 sec (66.7h)

Dose: 1.1×10^{20} e, 4.4 mdpa (for Fe E_d =40keV)

KURL1901 Third attempt for Liquid-metal corrosion test

1st specimen (NTK04L, pre oxidation 1000°C 10h)

Beam time: 1.1×10^5 sec (32.5h)

Dose: 5.8×10^{19} e, 2.3 mdpa (for Fe E_d =40keV)

2nd specimen (ODS sp-10 pre oxidation 1000°C 10h)

Beam time: 1.1×10^5 sec (32.5h)

Dose: 6.5×10^{19} e, 2.6 mdpa (for Fe E_d =40keV)

KURL1902 4th attempt for Liquid-metal corrosion test

1st specimen (FeCrAl-ODS / Pb-Li)

Beam time: 1.1×10^5 sec (32.5h)

Dose: 6.6×10^{19} e, 2.6 mdpa (for Fe E_d =40keV)

2nd specimen (JLF-1-SS430/Pb-Li)

Beam time: 1.1×10^5 sec (32.5h)

Dose: 6.8×10^{19} e, 2.7 mdpa (for Fe E_d =40keV)

1st specimen

Temperature monitor was failed because of trouble on AD8495 thermo-couple amplifier.

Another attempt showed: pre-spacer 630°C, rear-spacer 430°C

