

TRANSMISSION PROPERTIES OF X-RAY RADIATED FROM CROOKES TUBE USED IN TEACHING OF SCIENCE

Do Duy KHIEM, Hirokazu ANDO, Hiroto MATSUURA, Masafumi AKIYOSHI

Graduate School of Engineering, Osaka Prefecture University

1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan

The 3rd International Conference on Dosimetry and Its Applications (ICDA-3) Lisbon, May 27th – 31st, 2019

MATERIALS AND METHODS INTRODUCTION BACKGROUND **X-RAY SPECTROMETER** • In Japan, a Crookes tube, as a discharge tube, has been used in junior-high science classes, and the primary purpose is to teach the characteristics of AND TEK MCA8000D electrons and current. Pocket MCA • The X-rays emitted by the Crookes tube may cause exposure to teachers and participating students. Pocket Multichannel Power supply and Amplifier Crookes tube (3C-B, CZT Detector (XR-100T-**DPPMCA** Software (MCA8000D, Amptek CZT, Amptek Inc., USA) Kenis Ltd., Japan) (PX2T, Amptek Inc., USA) (Amptek Inc., USA) • A radiation safety guideline has not been evaluated sufficiently yet in Japan. Inc., USA) Induction coil: **Estimation of transmission** Energy of approximately 20 keV. Shielding material: * High voltage power supply, • $H_{p}(10)$ was up to 143 mSv/h at 5 То spark gap of 10 - 100 mm. attenuate cm^{1} . * Nominal dielectric breakdown radiation intensity voltage in the air significantly. approximately 1 kV at 1 mm. 50 cm Transparent * The desired output voltage can shielding

g material		

observe

behavior

Crookes tube.

SCOPES OF THE RESEARCH

- Investigating the characteristics and properties of X-rays emitted by a Crookes tube used in educational sites.
- Estimating the transmittance of transparent shielding materials to assure radiation safety and demonstration observation.
- Submitting the results as the recommendation and guideline for radiation protection at junior-high school science class.

CORRELATION BETWEEN OUTPUT POWER AND EXPOSURE

Experimental settings:

- The applied voltage was regulated by change of output power, and discharge distance was set at 30 mm.
- \circ The ambient dose equivalent H*(0.07) measured for 3 min at a distance 50 cm from the Crookes tube, and it was converted to a dose rate.

τO be obtained by regulating the the distance of the discharge electrodes or the output power. ot Collimator electron beam in a CZT detector 90 cm

Crookes tube:

- By applying a voltage of several tens of kV between the cathode and the anode, the cations in the evacuated tube are accelerated and impact the cathode, which knock out secondary electrons.
- These electrons emitted by the cold cathode are accelerated to collide with a glass tube to create a bremsstrahlung X-ray.

Acrylic (9.3 mm)

Shielding materials: • Aluminum.

• Lead acrylic: 0.3 mm lead equivalence, Kyowaglas-XA H-8, KURARAY Co., LTD. • Acrylic: Amersham Pharmicia Biotech LTD. The transmission of X-rays was estimated by the ambient dose equivalent $H^{*}(0.07)$ using an ionization chamber (ICS-1323, Hitachi Ltd., Japan).

CORRELATION BETWEEN DISCHARGE DISTANCE AND EXPOSURE

Experimental settings:

- The applied voltage was regulated by change of output power and was limited by the discharge distance.
- For each discharge distance, the the output power was set at position which the spark just

Table 2. Transmittance of shielding materials vs. discharge distance.

Discharge	Initial	Transmitted dose* (µSv)			Transmission (%)		
distance	dose* (µSv)	Lead	Acrylic	Aluminum	Lead	Acrylic	Aluminum
(mm)		acrylic			acrylic		
20	0.81	0.01	0.39	0.20	1.23	48.2	24.7
25	12.5	0.12	5.84	3.16	0.96	46.7	25.3
30	44.7	0.73	24.6	15.7	1.63	55.0	35.1
40	53.4	0.82	29.4	17.1	1.54	55.1	32.0
50	71.4	1.18	40.9	26.3	1.65	57.3	36.8

 \Box The exposure increased with an increase in the output power, and it is stable from PW8 when a spark occurs. It means that the dose will change if the spark does not occur (Fig. 2.).

determined by the equation of $I = I_0 e^{-\mu x}$ where the I_0 was the initial dose in Fig. 2. The linear attenuation coefficient μ of acrylic for each energy was interpolated using data from the National Institute of Standards and Technology (NIST, USA).

The energy for the calculation was the peak energy of unshielded X-rays shown in Fig. 3a. The energy of X-rays has a broad distribution shown in Fig. 1, but the calculated results matched to the experiment very well.

Table 1 V-mars an arrest	Output	Peak energy	Initial dose*	Transmitted dose* (µSv)		
Table I. A-ray energy	Power	of X-ray (keV)	(μSv)	Lead acrylic	Acrylic	
by materials with the change of the output	0	16.4	3.31	0.04	1.10	
	2	17.5	10.1	0.11	3.65	
	4	18.1	30.4	0.34	13.8	
power.	6	18.0	43.2	0.45	19.0	
* The dose measured for 3 min at distance 50 cm from the	8	18.6	70.6	1.09	36.5	
	10	18.6	69.2	0.89	34.9	
Crookes tube.	12	18.4	68.7	0.92	37.3	

71.41.1840.926.31.655'1.3

SUMMARY

- □ The Crookes tube emitted X-rays with soft energy of approximately 19 keV. □ The exposure and X-ray energy changed with electrical settings such as output power, and discharge distance.
- □ The lead acrylic attenuated significantly the exposure caused by X-rays radiated from the Crookes tube with the transmission approximately 2%.
- \Box According to ICRP 36, the dose limit recommended 0.05 mSv per each teaching exercise. The lead acrylic is well-adapted to a radiation shielding for Crookes tube, and its transparence assures to observe the behavior of electron beam during demonstrations.

References:

1) Ohmori Giroh, X-ray exposure in the teaching of science at junior and senior high schools. NIRS-M—105, Japan, 107-112 (1995) *(in Japanese).*

2) M. Akiyoshi, et al., Development of evaluation techniques for low energy X-rays from a Crookes tube, Radiation chemistry, 106 (2018) 31-38 (in Japanese).

3) Do Duy KHIEM, et al., Investigation of Characteristics of Low-energy X-ray Radiated from the Crookes Tube Used in Radiological Education, Radiation Safety Management, submitted.